Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications
نویسندگان
چکیده
Carbon nanostructures-including graphene, fullerenes, etc.-have found applications in a number of areas synergistically with a number of other materials. These multifunctional carbon nanostructures have recently attracted tremendous interest for energy storage applications due to their large aspect ratios, specific surface areas, and electrical conductivity. This succinct review aims to report on the recent advances in energy storage applications involving these multifunctional carbon nanostructures. The advanced design and testing of multifunctional carbon nanostructures for energy storage applications-specifically, electrochemical capacitors, lithium ion batteries, and fuel cells-are emphasized with comprehensive examples.
منابع مشابه
Egg-Box Structure in Cobalt Alginate: A New Approach to Multifunctional Hierarchical Mesoporous N-Doped Carbon Nanofibers for Efficient Catalysis and Energy Storage
Carbon nanomaterials with both doped heteroatom and porous structure represent a new class of carbon nanostructures for boosting electrochemical application, particularly sustainable electrochemical energy conversion and storage applications. We herein demonstrate a unique large-scale sustainable biomass conversion strategy for the synthesis of earth-abundant multifunctional carbon nanomaterial...
متن کاملThree-Dimensional Carbon Nanostructures for Advanced Lithium-Ion Batteries
Carbon nanostructural materials have gained the spotlight as promising anode materials for energy storage; they exhibit unique physico-chemical properties such as large surface area, short Li+ ion diffusion length, and high electrical conductivity, in addition to their long-term stability. However, carbon-nanostructured materials have issues with low areal and volumetric densities for the pract...
متن کاملMultifunctional structural supercapacitor composites based on carbon aerogel modified high performance carbon fiber fabric.
A novel multifunctional material has been designed to provide excellent mechanical properties while possessing a high electrochemical surface area suitable for electrochemical energy storage: structural carbon fiber fabrics are embedded in a continuous network of carbon aerogel (CAG) to form a coherent but porous monolith. The CAG-modification process was found to be scalable and to be compatib...
متن کاملNanoporous walls on macroporous foam: rational design of electrodes to push areal pseudocapacitance.
Supercapacitors, also known as electrochemical capacitors, are considered the most promising energy storage devices owing to their high power densities and long lifespan. [ 3–5 ] The fast charge and discharge capability make supercapacitors favorable for applications in hybrid vehicles, portable electronics, and backup energy systems. [ 6–10 ] Carbonaceous materials, including carbon nanotubes ...
متن کاملCarbon nanotubes--the route toward applications.
Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated ...
متن کامل